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ABSTRACT

The program SAGA exoloits short arc orbital constrairts in effecting the
adjustment of observations made by geodetic tracking nets emkracing both optical systems
(e.g., PC=1000, MOTS) and electronic ranging systems (Lasers, Secor, Geoceiver, etc.). ,

Provisions are made for consideration of:

a) random errors in the observations and in the iiming of observations;

b) serially correlated errors in observations;

c) errors in the adopted location of the cenrar of mass;

d) svstematic errors governed Ly erior mouels having coefficients

subject to apriori con*raiis,

The averall tracking net can include an indefinitely large number of stations (many
hundreds) as long as no more than fifteen participate successfully in the observations of
any pass. All orbital state vectors are treated as unknown and no limits are sct on the
number of state vectors thet can be solved for simultaneously. Allowances are made in
optical error modelling for reinitialization of error coefficients that becomes necessary
when any station exposes more than one plate on a given pass. In the case of electronic
tracking, up to three dropouts in tracking can be accommodated for each staticon on
each pass with appropriate reinitialization of error coefficients. A maximum of aver
250 error coefficients can be exercised in the reduction of each pass. This becomes
computationally feasible by virtue of algorithms providing the solution to problems in

what is termed second order partitioned regression.
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1.0 INTRODUCTION

In previous series of investigations conducted by DBA Systems far AFCRL
(Brown, Bush, Sibol (1963), (1964); Brown (1964b), we developed most of the theoretical

framework for the present undertaking, namely the development of a general and advanced

computer program for short arc geodesy. This program, hereafter referred to as SAGA (Short
Arc Geodetic Adjustment), has drawn on and benefitted from experience gained from three
preceding programs that were also based on the theoretical development referred to above.
These predecessors consist of the following programs developed by DBA:

4 Q) GDAP (GEOS Data Adjustment Program) developed for NASA Goddard

during the period 1966-1967 for the short arc reduction of observations
of geodetic satellites (Lynn, 1967);

2 MCT (Method of Continuous Traces) developed for AFCRL during the

period 1966-1967 for the recovery of geode tic positions from measure=

ments of sun-illuminated passive satellites rscorded against the stellar !
background (Brown, Trotter, 1967); ﬁ‘

) NAP (Tracking Network Analysis Program) developed for NASA Geddard
during the period 1967-196? for long arc erbital reduction, terrestrial,

lunar, or interplanetary, with options for recovery of station coordinates
ond error model coefficients (Lynn, et al, 1969).

Properties of SAGA relative to GDAP, MCT and NAP are indicated in Table 1. All four

programs are capable of exercising short arc orbital constraints in an unlimited multi-epoch }

. st
Ry p—

mode (that is, the number of state vectors that can be solved for simultaneousiy is without

present limif). In addition, NAP can exercise long arc constraints and con accommodate

extraterrestrial orbits (it employs a general n body integrator capabls of integrating through
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1.

12,

13.

14.

15,

Short arc constraints (unlimircd-no. cpochs)
Long arc constraints (unlimited no. epochs)
Extraterrestrial orbits

Geometric option (orbital constraints not used)
Recovery of staticn locations

(a) limited number
(b) unlimited number

Recovery of coctticients of potential function
Recovery of coordinates of center of mass
Recovery of tracking error coefficients

{0) optionally reinitialized after every pass
(b) optionally stable over specified sets of passes

Consideration of random timing ciror

Option for consideration of :eiiully correlated errors
by Autoregressive Feodlack T

Solution of general normal equations by First Order
Partitioned Regression

Solution of general normal equations by Second
Order Partitioned Regression

Tracking systems accommodated

(o) Optical (PC-1000, MOTS, Baker-Nunn,
BC-4, etc.)

(b) Electronic Runging (Lasers, SECOR,
GRARR, Radars)

(c) Microwave Intciferometer (MINITRACK)

(d) Noncumulative, one way doppler (TRANET)

(e) Cumulative, one way doppler (GEOCEIVER)

Structure of program and organization of input/output
optimized primarily for '
(0) Recovery of station locations
(b) Recovery of precise orbits
- {€) Recovery of tracking error coefficients

Program operational on

(a) CDC 3100/3200 (16X core, 4 mag. tape units)
{b) CDC 3800 (Naval Rescarch Lab.)

{c) UNIVAC 1230 (NASA Goddard)

(d) 18M 360/75/91/95 (NASA Goddard)

(e) 1BM 7044/7094 (AFCRL)

X

KR

XXX X

XXX

X

KKK X

X
X

X

X

) Extension underway to add indicated capability.
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spheres of influence while allowing the gravitational potential of the currently dominant
center of attraction to be represented by solid spherical harmonics up to degree and order
(n,m) = (24,24), While NAP can be employed for satellite geode- its primary intent and
organizationare directed toward precise determination of orbits with appropriate consideration
being given to (a) serially correlated errors of tracking systems, (b) sysiematic errors of
tracking systems, (c) errors in locations of tracking stations and (d) errors in coefficients of

the potential function (at this writing the capability (d) is in the process of being implemented

in NAP). Two advanced features first introduced in NAP have besn incorporated into SAGA,

namely, solution of the normal equations by means of second order partitioned regression

and consideration of serially correlated errors by autorcgressive fesdback. In Sections 4
and § of this report we shall provide the detailed development of the theories of partitioned
regression and autoregressive feedbaclc,

All four programs can recover coordinates of tracking stations. However, in
forming the reduced system of normal equations GDAP and NAP retain the system in core.
This places a definite limit to the number of stations that can be solved for simultaneously
(typically to 20 to &0 depending on computer). On the other hand, SAGA employs the
logical development originally proved in MCT wherein the reduced normal equetlons are
generated piecewise in core but ara cumulatively formed on an external file (magnetic tope
or disk) . By this means it becomes practical to accommodate an overall tracking network
1 embracing literally hundreds of unknown stations. The arimary restriction is thot only a

i limited subset of stations is regarded as participating successfully in the observation of any

given pass (in SAGA the number is limited to a maximum of fifteen). Such a restriction is
of no practical consequence in actual short arc operations, for rarely would as many as

fifteen stations participate on a given pass, rmuch less all be successful .

Error mode! coefficients appropriate to each channel of observations can be
carried as adjustable constrained parameters in all four programs. In MCT and SAGA, all
exercised error coefficients are regarded as unstable from pass to pass and thus ars auto-

matically reinitialized on each pass. GDAP and NAP also have this capability but are

somewhat more fiexible in that any desired subset of error coefficients can, on option, be




treated as stable over a specified set of posses. For example, timing bias from a given
station can be regarded, when desired, as stable over certain specified passes, rather
than belng reinitialized on each pass as are the other coefficients. This capability was
not incorporated into SAGA primarily because it complicates considerably the logic and

set up of the program and has proven to be a feature that is not often exercised in practice,

Of the four programs only GDAP has the option to perform geodetic reductions

in a strictly geometric mode. This option was not incorporated into the other programs -

because experience with GDAP demonstrated the clear superiority in satellite geodesy
of the short arc mode over the geometrical mode. In particular, recovery of tracking error
coefficients has been found to be far superior in tha short are mod=, Comparative analyses

of the short arc versus the geometrical ap; ‘ouch are made in Brown (1967a) and Brown (1968).

SAGA incorporate- cu..uin unique capabilities which experience with the other

- programs indicated would be desirable, One is consideration of random timing error. This

was included primarily to make proper allowances in the reduation of PC-1000 chopping
observations of passive satellites in view of studies indicating an rms mechanical jitter of
about 0.3 ms in the operation of the chopping shutter. lnasmuch as relatively close

satellite passes can cross the plate of a PC-1000 at rates up to 10mm/sec., an rms error in
timing of 0.3 ms can be equivalent to as much as 3 mic~-s on the plate and thus be
comparabla to plate measuring errors.  Although it remains yet to be determined, random
timing error might also potentially be of significance with the Geoceiver, particularly if

rms noise levels in phase determination amounting to only about 0.1m are achieved as
projected in the design. Inasmuch as range rate of an observed satellite can amount fo as
much as 5000m/sec, an rms error in timing of as little as 2) microseconds can be equivalent
to the expected ms error of 0,1m in phase determination. Therefore, to be on the sofe side,
SAGA aiso makes provisions for the possibility of significant ra..lom timing error in electronic

observations.

Another unig e feature of SAGA is its ability to take rigorously into account
errors in the adopted center of mass of the eorth, As was pointed out in Brown {1967), when

one elects in a short arc reduction to hold fixed the coordinates of a selected station, one

-4 -
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thereby implicitly defines what is to be regarded s the location of the Earth's center

of mass. The error in this implicitly adopted center of mass does have an effect (albeit

a rather weak effect in most cases) on recovered coordinates of tracking stations. In the
case of optical tracking networks of continental extent, the effect of such errors is very
nearly equivalent to that of an error in scale. Through a series of exercises conducted
with GDAP, Lynn, (1969) established, for example, that an error of 50 meters in

the vertical component of the adopted location of tha center of mass (verticei, that Is,
with respect to the fixed station) can cause an error In scale of about 1:200,000 in a
continental network. In view of such findings, we incorporated into SAGA the capability
of treating the coordinates of the adopted center of mass as constrained parameters. This
means that in sufficiently strong tracking networks of continental extent, the possibility
emerges of improving the location of the center of rmass relative to the origin of the
cdopted datum, In wecker, more limited networks the main benefit of carrying coordinates
of the center of mass as constrained parameters lies in the more comprehensive ond realistic
error propagation that is thereby produced (here, no significant improvement in the location

of the center of mass is to be expected).

SAGA also differs from the other programs in that more comprehensive error
models are employed for optical tracking systems. In addition SAGA is expressly designed
to accommodate observations made by Geoceivers, Ranging error models that have so far
been incorporated into GDAP and NAP are not sufficiently general to accommodate
Geoceiver observations (should the need arise, however, they could readily be extended
to do so). In the next two sections we shall go into the detailed developmant of the optical

and electronic error models employed in SAGA.

From the foregoing review it can be appreciated that SAGA provides a powerful
tool for satellite geodesy, What is not yet apparent is the fact that in spite of its flexibility
SAGA has been designed to be easy to set up and use, This is accomplished in part by
building into the program selectable sets of standard ontions sufficiently broad to cover most
routine situarions likely to be encountered in practice, Special situations can be accommodated

when required, but at the expense of a more ex’ensive set up of control parameters, "
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2.0 OPTICAL OBSERVATIONAL EQUATIONS

2,1 Projective Equations

¥, as in Figure 1, X, Y, Z dencie the space coordinates of @ point photographed
by a camera lc = }a* X¢, Y, Z¢, it is well known that the image .coordinates x,y are

ideally given by the projactive equations

A (X=Xc) +B (Y-Y¢) +C (Z2~-Z°¢) _ |
= x,te

x =
T 7 D(X=Xt) +E(Y=Y®) 4 F (2~2%)
M oo AOCXT) +B (Y-Ye) +OZ-20)
= c
YT KX +E Vv) T 2T
in which ’
Xpe¥pe€ = coordinates of center of projection is image space (note: the
z axis of image space is directed along the camera axis; thus
¢ corresponds to focal length).
A B C | = orientation matrix = matrix of direction cosines of x,¥,2 of

A BY c image space relative to X, Y,Z axes of object space
(specifically, A,B,C are direction cosines of x relative to

D E F X,Y,Z; A'B'C' of y relative to X,Y,Z oand D,E,F of z
relative to X, Y, Z).

The orientation matrix can be expressed uniquely in terms of three angles. If the X, ¥,z
axes of image space and the X, Y, Z axes of object space are related by the angles

@, w,x indicated in Figure 2, the orientation matrix can be shown to assume the form:

A B C] -eoéa So8x~glanax sinw sinx sinx cosx~cosa ginw sink cod w ainx
(2 A BCle cosa gink~ sinq 81D w 608K’ ~sina shax-cosa sinw eosx " goswoosx |,
. DETP sina cos w aOB R 0O W sjaw

>

By div‘iding the numerator and denominator of the ratio on the right hand of (1) by:
@) R = [X-X) (Y=yep + zozeyp it

one can express the projective equations in terms of direction cosines:

-7-
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- A\ + By + Cv
X T %TC DNtEp +Fy
(4)
AN+ +C'Y
y = ypte
DA +Eu +Fv
wherein

5) A= (XX)R, p=(Y-YOR, v=Z-Z)R,

Equations (1) and (4) can be put into the alternate form:

A XX Akexy) + Ally-y,) +De

v Z=Z®  Clx=x,) + C'(y-y,) *Fc
(8) .

B Y-Y® B (x=x,) +B'{y=y,) +§f_ .

v Z-Z° = Clx=x,) +C'{y-y,) +Fc

The direction cosines A, 4,V can be expressed also as:

sin a* cos w*

]

@

cosa* cos w*

v = sin w*

in which a*, w* are measured in the same sense as the &, w that define the direction

of the camera axis (Fig. 2).

Once the projective parameters &, w, %, X,,¥,,¢ (and possibly others, such as
coefficients of distortion) have boen determined from a plate reduction based on measured
plate coordinates of selected stars, the plt;te coordinates of satellite images can be
e‘mployed in equations (6) and (7) to establish their directions a*, w*. If X,Y, Z are
svitably defined, a*, w* will be equivalent to Greenwich hour angle and declination,
which, in turn, can be converted into right ascension and declination if the time of

the ohservation is known.

It has turned out that optical observations published by the various data

. gathering organizations consist of the derived quantities right ascensicn ond declination

-9-
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(accompanied by time) instead of the original observations, namely, the measured
plate cocrdinates. Thus the uncritical user is likely to regard right ascension and
declination as directly observed quantities rather than as derived quantities. While
errors in plate coordinates 'remain uncorrelated for all regions of the celestial sphere,
errors in right ascension and declination become highly comrelated in polar regions.
Since most organizations do not dccompany their published right ascensions and
declinations with covariance matrices, such correlation is not generally taken
properly into account. Consider, for example, ths extreme case of a plate centered
at the pole. [f plate measuring accuracies are equal in x and y {0, =0, =0), it can
be shown that the standard deviations of the derived right ascension and declination
(e, §) are given by:

0y = (otan 8)/c

8
® o = (osin? O)/c

and the correlation between &, § Is given by:
9) Pas = 2sin otcos .

Thus correlations between &, 8 can range between - to +1 for points onthe same plate.

To those versed in analytical photogrammetry, there is good reason to prefer
plate coordinates over derived angles. Aside from the matter of correlation, the
projective equations (1) relating x,y and X, Y, Z are actually simpler than the relations
between &, § and X,Y,Z. However, the overriding reason for preferring the projective
equotions has to do with error modeling. Systematic errors in optical directions are in
large part attributable t - -rors in the projective parameters produced by the plate
re. :tion. Especially significant, in many instances, is the angular instability of
the camera throughout the data gathering period. As will shortly be demonsirated, a
physically meaningful optical error model can be expressed in an especially compact
form when the projective equations provide the observational equations for the reduction

In particular, we shall show that four error coefficients can account for a total of eight

-10-




distinct sources of systematic error.

ot oot T e it ke e 5.4

Because plate coordinates and associated projective parameters are not generally
available, one may resort to what may be termed the 'dummy camera method' to

reconstruct from the given angles sets of plate coordinates that are approximately

I

equivalent to those actually measured. The dummy camera method involves the
e following steps:

T

y i

1) afocal length ¢ is adopted that approximates the focal iength of the
camera actually used;

2) acentral ray is selected to define the direction of the camera axis
(02, w) in equation (2);

- D TN

i 3) with the swing angle % provisionally set equal to zero, the orientation
. matrix of the dummy camera is evaluated from (2);

ot

4) the given angles for each ray are converted into direction cosines
A, 1,V by means of such relations as (7) (typically a* corresponds to

Greenwich hour angle computed from sidereal time and right ascension and.
w* corresponds to declination);

TR

' 5) with x, and y, set to zero, with ¢ equal to the value adopted in step (1)
1 and with the orientation matrix computed in step (3), the direction cosines

A, U,V are substituted into eqs. (4) to generate equivalent plate coordinates

L X, Y.

The dummy plate coordinates thus generated together with the adopted projective
parameters of the dummy camera provide artifical chservations having errors equivalent,
for all practical purposes, to the errors in the original observations. For reasons shortly
to be made clear, one extra step in he dummy camera projection is desirable. This is
to redefine the swing angle x (provisionally assigned a value of zero in step (3)) so that
the x axis coincides approximately with the trace of the satellite. In this regard we
would note that when the original observations are uncorrelated and are of the some

accuracy (0, =0, = a), so also are transformed values x',y' defined by: -

x' = xcos u=ysin X

y' = ysin xt+txcos x.

o S




This means that the x axis of the dummy camera can be arbitrarily directed without
significantly altering the error structure of the dummy observations. Accordingly,
directing the x axis of the dummy camera along the trace of the satellite is altogether
acceptable, even though this may not necessarily correspond to the direction of the

original x axis.

2.2 Optical Error Model

The x,y coordinates reconstructed by the dummy camera method may be

represented as:

m
X = X, +¢ —
? q
(10)
n
= e -
Y Yp a
in which
m 1A B8 C A
an il = {A 8 C b .
q D E F v

The systematic errors in x and y attributable to systematic errors in projective parameters

may be represented as:

m c m
x = &, += dc+=me-c—
*q q q5q

2
(12) .
= h €S -
by = &y, + 6c+q &n <:qa 6q.

The errors &m, On, 8q arise from errors in the orientation matrix. Let Aa, Aw, Ax denote

three infinitesimal rotations that serve to correct the orientation matrix. Then if m',n',q"

=12- _ .
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denote the correct values of m,n,q, one can write:

m' ) ax sl fAa B ¢l
3) || = |-ax 1 aw|la e cllul,
g b ~Aw 1 | |D E F_||v

r
rl Ax Dba m
= =% ] Aw n
-0y =Aw 1 J q

Here, it will be noted that the matrix in the quantities Ao, & w, Ax qualifies as an
orthogonal matrix if terms of second order are neglected when the matrix is multiplied by
its transpose . Therefore, it is a rotation matrix. However, Aa, Aw, Ax do not consist
of wirect additive corrections to the e, w, ® implicit in ﬂ;e original orientation matrix.
Physically, B and Aw are components of rotation of the camera axis in the xz and yz
planes of image space, and &« is a gomponent of rotation about the camera axis. The

errors in m, n,q attributable to errors in the orientation matrix are given by:

dm m'=m 0 Ax  Aa| |m ‘nAx+qbda
(14) |dn ! -Ax 0  Awjin] = |-mAn+gqdw] .
dq q' -q -da -Aw 0 }.lq -mAa = nlw].

]
=)
1
=4
it

Before substituting these results into (12), we shall express Ao, Aw, Ax as:

Aa = ba+T ba
(15)  Bbw = bw+r 6w )
Ax = & +7 6%

in which T denotes the time of the observation relative to the time of the cenfral ray
defining the direction of the axis of the dummy camera. By virtue of (15), we odo;;f

the assumption that the orientation of the camera is not necessarily strictly stationary

2% : §
Bl ins :

et e s .
et et i et i e A Y e




P

i e

T E 2R

T T P VU DUP e SRR

b e i AT e e T

I AR e eSS
Yer iUt e e e -

-

et e neacommp e

e j P




Ak st

" BN

but may be changing infinitesimally with time. If we now substitute (15) Into (14)

and then substitute this result into (12) we shall arrive at the expressions:

= X x? x
Ox = ox, + = be-¢ (I+?) ba +;Z 6w +y Ox
-c (l +§)76& + 3‘&11'6&: + yT OX
(16)

5y=6y’+§66+¥-6a+c(1+ bw - x &xn

ONN’ nNN-J

+5cx1‘6&+ c (l+ )rﬁd! - xr 0% -

In the reduction leading to this result we employed the relations x=x({m/q), y=c(n/q)

which follow from the consideration that x, =y, =0 In dummy camera projection.

As it stands, the error model (16) involves a total of nine parameters. However,
the number can be reduced to a total of four essential parameters by certain considerations.
First we note that for cameras of long focal length such as the MOTS and PC~1000, x and
y are less than one tenth as great as c. Accordingly, terms x3/c? and y? /c® may be set
equal to zero without significant effect. We now recall the fact that the swing angle »
is chosen in the adopted method of dummy camera projection so that the x axis coincides
very nearly with the photographic trace of the satellite (which in tum typically departs
from linearity by only a few hundred microns at most). Thus for all points on the trace
» 73 0. Moreover, the x coordinates of points along the trace can be represented
approximately by the relation x =xr where x denotes the mean rate of chon‘ge of x over
the plate. If in line with these considerations we make the following set of sub-
stitutions into (16):

(17)  x3/c® = y3/e® = 0, y=0, x=xr

’

we shall obtain the result:
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(18a) 6x = bx,-cda + 3= bc = or b&
(18b) 6y = 8y, ~cbw = xr 6x = cr bw ~ xt? b,

We sce in (18a) that the coefficients of 6x,and Oa are constant multiples of each other;
the same is true of the coefficients 5¢c and §a. This means that Sa alone is sufficient to
account for the combined cffects of infinitesimal changes in o and x,. Likewlse, 8¢
alone is sufficient to account for the comtined effects of an infinitesimal change in scale
(or focal length) and an infinitesimal rate of change in the 6 component of rotation.
Similarly in (18b) we find that 8y, and 6w are perfectly coupled, as also are §x and
8w. Thus, the rotations 8w and 6 x serve also to account for 8y, and 6w respectively.
Further simplification can be achieved f sm consideration of the fact that with cameras
having a focal length that is many times larger than the pl(:te format, the term in 6 is
liniy to be relatively insignificant in comparison with the terms in & and 6. For
cameras such as MOTS and PC~1000 the coefficients ¢t of 6 and & in (18a) and

(18b) are about ten times larger than the maximum value of the coefficient xt? = x1 of
5x. This means that §x must be about ten times greater than 6a and 6 in order to
induce a comparable error. In a study of camera stability reported by Brown (1969) the
maximum values of 8¢, 5&, and 6x for a PC-1000 w:re found to be about 0101 /sec for
6 and 6w and about 0Y02/sec for §x. Although 6% did become about twice as

great as 86, 5 Its net effect was only one fifth as great inasmuch as |max x| » O0.1c,
In view of such consider.rions, we regard carrying 5% in the error model to be generally

of dubious value and accordingly have dropped it in further treatment of the model.

By virtue of the findings of the previous paragraph, we may drop from the

general error mode| (16) the tems in 0x, By,, 60,6 and §x%. This leaves a four
parameter mode!l of the form:

6x _c(,_'__x_:;_) -’fcz y i;— (6 |
[+
(19) =
L-ﬁy XY C(]'*'ﬁ) -x )4 bw
C c3 c
6x
s..ac_.i
=la= e .

PP P

e




This compact model is sufficient to account not only for biases in six projective

parameters but also for my uniform drift of the camera axis throughout the exposure.

Onc must not lose sight of the fact that this result does depend in part on dummy camera
projection that places the trace of the satellite through the plate center and approximately .

along the x axis of the plate.

When optical systems are employed to record a flashing light, synchronization
of all observations is automatic and the problem of interstarion timing bias does not arise.
However, when shutters are employed to chop the traces of sun illuminated passive
satellites, the possibility does arise that local clocks may be inadequately synchronized.
In this case the error model (19) must be augmented by terms of the fom:

Bx, x 6t

(20) . '
0y, = ybt,

where Ot represents the interstation timing bias. In ¢ short arc tracking network 8t can
and should be forced equal to zero for one arbitrarily selected station in the network.

The biases &t for the remaining stations are subject to a priori constraints appropriate to
the timing system employed.

In cases where optical and electronic systems both track a satellite carrying a
flashing light,interstation timing bias is accommodated in SAGA by treating the timing of

the optical system es unbiased and the timing of the electronic systems as biased relative
to the optical system.

A common and desirable practice in optical tracking is to reorient each camera |,
one or more times during the course of a pass in order to obtain extended coverage from
a given station, MOTS cameras occasionally obtain as many as four plates on a given
pass and two or three plates are common. Under such circumstances it becomes
necessary to reinitialize the error model for each plate (except for interstation timing
bias which would be common to all plates at a given staticn for a given pass). This

means thot if a particular station were to acquire four plates on a given pass, one
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would have to determine an independent set of ccefficients 6o, 6w, Ox, C}:c for each
plate and, where applicable, @ single interstation timing bias 8¢ for all pilafes. As a
conscquence, an oplical station can require the exercisc of as many as seventeen error
coefficients for a single pass. Such a capability is provided in SAGA. Let us consider
what this implies in view of the fact that SAGA is designed to accommodate as many as
fifteen stations on a given pass. The most extreme situation wouid e one in which all
fifteen stations are employad in a chopping mode and each stction successfully acquires
four plates. The number of error parameters to be recovered on a single pass would then
amount to 15x 17=1 = 254 (the timing bias at one station is corstrained to zero). Such

@ reduction becomes practical only by virtue of the use of second order partitioned
regression as is discussed in Section 4.

2.3 APriori Constraints

By virtue of the stellar control employed in plate reductions, systematic errors
in ¢ 1'ly determined directions are sharply bounded. The error budget for a PC~1000
reduction provided in Table 2 is taken from Brown, Bush, Sibol (1963). For cuirent
validity the bﬁdget need be changed in only a few respects. The use of the SAQO star
catalog in place of the Boss catalog would about halve the contribution of item A3.
Tangential or lens decentering distortion is now rouiinely culibrated and removed
according to methods developed in Brown (1964), (1966). As a result items A6 and
B6 of the error budget can Be reduced to about one third their former values. The most
significant change to the budget affects item A1l which is concerned with camera
stability. The budget calls for rejection of the plate if comparison between pre and
post orientations indicates the presence of camera instability equivalent to more than
one third the net rms error in the plate coordinafes. This recommendation has been
found to be too stringent te ba fo!lowed in general oractice. Instead, instability is

tolerated to the point where its effects on direction are comparable with those random

errors. In effect, this means that some PC~1000 plates are accepted even though a change

in orientotion of as much as two seconds of arc exists between pre and post calibrations.

When such a change is continuous (as opposed to a suddan disturbance), its effect on
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TABLE 2 ERROR BUDGET FOR PC~1000 FOR POINTS OUTSIDE ATMOSPHERE

RMS CONTRIBUTION IN MICRONS UNDER;

' (a) (b) (c)
ERRCR SOQURCE Favorable Normal Unfavorable . ¢
Conditions  Conditions _Conditions ¢
1. Random setting error (average of 2 settings). 1.0 1.5 2.9 x‘i
2, Emulsion instability. 1.0 1.5 2.5 - é
3. Low frequency atmospheric shimmer. 0.5 1.0 3.0 3
4. Star cotaloy error (Boss). 2.0 3.0 4,0 ¢
w 5. Residua. (adia! distortion. 0.5 1.0 2.0
o z 6. Residual tangential distortion, 1.0 2.0 4.0
g o) 7. Flatness of surface ot emulsion, 3.0 0.0 0.5
= E 8. Residual differential refraction 0.0 0,5 1.0
2= 9. Residual comparator ecrors, 0.5 1.0 1.5
2Z |10, Timing errors (WWV). 0.5 1.0 2,0
< 5 11, Camera instability (below threshold of
i routine detectability). 1.0 1.5 2.0
< POOLED RSS TOTALS: 3.0y 4.9u 8.2y
w 1. Random setting error {overage of 2 settings), 1.0 1.5 2,0
O 2. Emulsion instobility. 1.0 1.5 2.5
Z ., 3. High frequency atmospheric shimmer. 1.0 2.5 5.0
Q0 | 4. Residual error in calibrated orientation, 0.5 1.0 1.5
<7 5. Residuai radial distorticn, 1.0 1.5 2.5
Z Q | 6. Residual tongential distortion, 1.0 2.0 4,0 .
2 52| 7. Flatness of surface of emulsion, 0.0 0.0 0.5
= g 8. Residual parallactic refraction, 0.5 1.0 1.5
oo x| 9. Residual comparator errors, 0.5 1.0 1.5 ,
o POOLED RSS TOTALS: 2.4 4,5 8.0 }

GENERAL QUALIFICATIONS;

Q.

bl

C.

el
f.
g'

Calibration is assumed to involve at least 40 stellar images compactly distributed about flashing light trace
and divided approximately equolly between pre- and postcalibrations.

Elevation angle of camera is taken as 30° and altitude of flashes as 400nm,

Photopiocessing procedure recommended by Gallnow and Hageman (Astronomical Journal, ppP. 399-404, Vol.}
61, Nov. 1956) is assumed employed in order to minimize emulsion instability; for same season, points . }
within one centimeter of edge of plate are assumed npt to be measured, ]
Atmospheric shimmer is taken to be that characteristic of maritime subtropical atmosphere ot 30° elevation {
angle with PC-1000 employed at full (200 mm) aperture. : Rl

Timing errors (WWV) are taken as 5, 10, and 20 milliseconds.for cases {a), {b), (c), respectively,

Comparator is assumed to be calibrated and properly operated.

Plates ore assumed  *  rejected if cumperison between individual pre and post orfentations indicate ’

presence of cam: Jility equivaleni to more than one third the net rms error in the plate coordinates. ‘
i
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satellite directions is likely to be less than one second of arc because of the relatively

St

short time interval spanned by the satellite observations.

In view of current practice, we would suggest that a priori constraints for

St Lot LN g

PC-1000 and MOTS optical error coefficients be selected from one of the following

three schedules:

Schedule | Criterion [ Oy Ou Oy Oc

1 (favorable) 0, <34 05 Cv'5 190 0u
2 {normal) 3<g,<6p | 1V0 10 2Y0 204
3 {unfavorable) | 0, > 64 195 15 370 30u

The quantity o, refers to the ms error achieved in the plate reduction.

A primary advantage of the short arc approuch to satellite geodesy over the
geometric approach is the practibility of accounting for systematic errors in extensive
networks through error modeling. On strongly observed arcs, adjusted values of many
of the error coefficients can constitute substantial improvements over a priori values.
On the other hand, some error coefficients may prove to be intractible, thair
accuracies after adjustment being no better than before adjustment. This has been
used as an argument against the exercise of error models in the adjustment. Such an
argument is unsound for it is clearly important that the effects of statistically bounded .
systematic ervors be rigorously taken into account even when such errors are not
amenable to worthwhile reduction. This is especially so inthe case of plates
containing a large number of satellite images, as when passive satellites are recorded.
Here, one wou'!d obtain unduly optimistic estimates of accuracy from error propagation

if one were to ignore the possible existence of systematic error.

2.4  Sp=cial Corrections

SAGA is designed to accept any opticul observations that are provided in the
GEOS format of the NASA data bank. Unfortunately, there is no uniform standard

Bl te s R LA —




.
with regard te certain corrections that is followed by all agencies producing optical

data. In particular, the following corrections may or may not have been applied by

given agency:

1)  polar motion;

2) conversion of times to UT1;

3) parallactic refraction;

4) phase angle correction (chopping of passive satellites);

5) propagation delay (chopping of passive satellites).

Because of the lack of homogeneity in the application of such corrections, SAGA has been

provided with a special preprocessor which serves to apply these corrections as needed.

Characteristics of the preprocessor are ciscussed in Part Il of this report.

2.5 Orbital Constraints

The orbital integrator employed by SAGA is that developed by Hartwell (1968),
(1969). It employs a power series solution to the equations of motion wherein each
coefficient is formed in terms of its predecessors by means of recursive algorithms. The
version of the integrator employed in SAGA truncates the gravitational potential at
(n,m) = (4,4) inasmuch as this has proven to be entirely adequate in short arc applications
(Brown 1967). If x,y,z denote the geocentric inertial coordinates at an arbitrary time r
relative i0 an adopted epoch 7=0, the power series solution of the equations of moticn

can be represented as:

- g, 4, G ...0, K o 7]
@) |y y| = [b by ba.oeby {71
z z Co € Cgessty| [T° 2T

i

in which all of the coefficients are functions of the six initial conditions at T =0




T T T YT

(namely: Xo,¥0+s 20+ %o+ Yor20) and gravitational coefficients. The series is truncated
automatically when a prespecified tolerance (presently taken as 0,001 m) is satisfied
for the maxium value of T to be exercised. If the epoch is taken near midarc, the

radius of convergence of each expansion is suficiently great to accommodate arcs as

long as one third of a revolution for nearly circular orbits.

The versicn of the integrator employed in SAGA also geneiates power series

solutions to the variational equations relating errors in x,y, z at time T to errors in the
adopted location of the center of mass and errors in the six initial conditions. If we
let Xoo+ Yoo r Zoo denote the earth-fixed coordinates of the center of mass, the matrix

of partial derivatives generated by the integrator (the matrizant) can be expressed as

_ 90, y,z;t)

(220 Q = TRNON
; (,9) a(Xleoolzow"OIYolzolxol)'olzo)
E: 011 nm *e e nm
3 =0y Qg ... Qg

Oy Oz ... Op

¥ in which each QL. is, in turn, a polynomial:
#
j: (23) QL. = {ao a1 aa LN aﬂ)&' ]-!
T
7-3
L7

¢

Inertial coordinates generated by tha orbital integrator can be referred to an

earth-fixed framework by the application of the transformation:

e as  cmn

X

X
Y Y
. R O
Z z
@) 1ol = [r ] |
¥ y
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in which

cos YT sin Ypr O =sin¥T7 cos¥T O
(25) R = |=sin P cosyT Of, Ii=lb ~cosPr =sinypr O}.
0 0 1 0 0 0

In a similar manner the matrizant can be transformed to earth fixed coordinates by the

operation:

(26) d "= R G = a(XpY,Z;'l") .
(30 9) (3' S)(S'B) a(XNIleZm,xo'yo,zo,;(o'yolio)

With these results we are now in a position to develop the optical observational equations

for the short arc reduction.

2.6  Optical Observational Equations

If the X, Y, Z in the projective equations (1) are replaced by the values computed

Py

from (24), the equations become functionally of the form:

x = f (xcchlZcl)%ollezmlxorYorzorio').'o:io;") 3
(27) ' : L] . ;‘
y = B3 (X% Y, Z% Xoo 1 Yoo r Zep # Xor Yor ZorXo r Yor Zo it)

If x°,y° denote the observed values of x,y, the cdjusted vaives corrected for systematic

error can be expressed as:

x = x°+v, +xv, +x8t+ bx

(28)

Y y°+v,+§'v,+§'6f+6y

where 6x, 6y are given by (19). In.(28) vy, ¥, denote residuals reflecting random error
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in x and y, and v, denotes the residual reflecting random error timing. The terms
in 8t account for the bias in timing (eq. (20)). We naw set up the relations:
XE = (XY™ + BXE  Xpp =XB +8Xo X =3 +8x5 %o =xT + 8%,

@9) YO =(Y)P+EYT Ypo =YR t0Yp o =¥ty Yo =¥3 +8y

where the orientation matrix has been developed by dummy camera projection. The

values of the plate coordinates computed from (31) then become:

ZE = (ZC)0+ §2¢  Zy, =ZR +6Zy, zo=xX +0zq 2 =P + 6%,
in which the superscripts (00) denote approximetions and the §'s ure correspdnding
corrections. Substituting these into the right hand side of (27) and linearizing the
resulting expressions by Taylors series, we obtain:
X = Xw"'ax : n o " (bxc,ﬁw;ﬁzc,..., 69016*0"
a(xcivclzclxm:Yoolzma’blYoczolxolYovzo
(30) 3y . c RN
y = Ym+ " - - (6x ,6“,52 ,...,6y°,62°)
a(xcIYcIZchmIYmIzmIXOIyolzoleIYOlzo) ‘
in which
x® = f1((xc)°°;(Y°)°°r---:zg°) b
G1) . | N
Yo = ), (Y9, ...,220) . '
To arrive at explicit expressions for the elements of the linearized observational equations, ]
we let X®,Y%,Z% , X% ,Y®, 7% danate the components of position and velocity for the )
time T of the observation as computed from equations (21) and (24) in which the given E
approximations in (29) are employed in the integration. Then we define the auxiliory: -;},% 4
. o
m°°" A B CT [x®-(xeyo ‘*E %
(32) |[n®] = [Ar 8 ] [Y® - (ye)e éé :
. Bk 9
q® D E F Z® - (Z¢)® :_‘gg _
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xoﬂ
(33) =
y°° q n

where ¢ denotes the focal length adopted in dummy camera projection. The partial

derivatives of the plate coordinates with respect to station coordinates is given by:

3x,y) i
(1) = mtil
(34) (23") B(XC,YC.ZC) q

als

1'0 =x%c| |A B C
0 1 =% | |A' B C'
' D EF

In terms of this the partial derivatives of the plate coordinates with respect to center of
mass and orbital state vector are given by:

. . a("lY) =
35 8@ = 7= e
o @re) Ko YooreenrZp) (3e3) (3.0)

in which & is given by (26). The time derivatives of the plate coordinates required in
(28) can be computed from:

& .xm
@36 | X = 8@ |
: ).’ (3 ,3) t{m
%),

If we partition B®) as:

a(x’ )’) § a(xt Y) [
(3) = S =| BEY; géY
@7) (38’9) 3(%o0r Yoo r Zoo) : 3o + Yo 1 Zg rXor YorZe) @3 (3e)

the linearized observation equations can be put into the form:

@38 A v = B® g - e sE) . pE) @ ~ BB g0 - B W = ¢
G.0)6,3) (6,803 (@), (o)) (B)0n) (a6 (@0
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(39) 8@ = . 5@ = (81,
Y
2 X r&a
- (1 +—-) zy Yy = )
e c ¢ w
B(‘) = - , 6(‘) = .
xy P Y o
b ¢ s
? At this point we shall recognize that as many as four plates may be acquired ot a given
3 station for a given pass. Accordingly, there may be as many as four sets of eror
3 coefficients, Letting p denote the pth plate (max p=4) recorded and introducing the
: subscript | to denote the i th point observed by the station, we may express the pair of
5 finearized observational equations generated jth point, if cbserved on plate p, as:
L w0 Ay
3
1 in which
3
3
E
-25-
——— — S -

z - . '\w:«-!g pre 7]
B N T S §
g it s Do

P R S
Sin ok <37 5 M PR =




TR - R S = < S i oy i i

(41) 8, = "'[B(;)s B(:) B(::Q B(:J) 511’3(:): EH,B(:} 53,3(3 €‘v3(::]
(@ a+e) @) (/2 (@) (1) (3,49) (a,4) (3,4) (3,4)

@2 8 = (60 gan gan’ ga) gw’ g@T g s@")
(@+4,2) (18) (1,3) (1,8) (1,9 (1,4) (3,4) (1,4) (1,4)

The dimension 4 in these expression. is introduced to denote the total number of error
coefficients exercised by the given station on the given pass. The quantity £, is defined
as:

£, =1 if i=p

£.,=0if i#p.

43)

In this fomulation it is understood that the number of purameters generated by a given
station for a given pass increases by four with each plate successfully recorded. Thus
B , may range from a minimum of a (2,17) matrix for a single plate to @ maximum of a

12,29) for a set of four piates.

2.7  Normal Equations

We are now in a .posiﬁon to consider the formation of the nomal equaﬁons'
for optical observations. In doing so, we shall employ the methodology employed in
Brown, Trotter (1967). Accordingly, we first form the normal equations for a given
staﬁon’and pass, ignoring the existence of other stations and other passes. If the
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covariance matrix of the random errors in plate coordinates and timing for the jth

point from the given station is denoted by:

63 0 0
H ' .
@4 A 0 o:J ol ,

3
3,3)
( 0 0 op

the system of normal equations generated by the point can be expressed as:

(45 N, 8=c,

in which
-1
Ny = By (A,A,A])7 B,
46)
_nt T,~1
c, =8, (A;AA)) €.

It is to be noted that since:

. oy s F ;‘3 O'T? 0
T o
47) A A A = 0 0'3’+ y? a:,
the results of the multiplication by (A s Ay A ,)-1 can also be effected by treating fhis
matrix as a unit matrix in (46) after modifying B‘ and ¢, by dividing their first and

- . 3 3 o a -] 3
second rows, respectively, by (0‘,’ +x, OF, )é and (0‘,‘+y, 0‘.,-,)# .

The system nomal equatibns generated by all points from the given station and

pass is simply:

48) NO§ =c¢
where

‘N = TN,
(48a)

¢ = Ec: .
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We now introduce subscripts i and k to denote the ith station and k th pass respectively.

The normal equations (48) may then be written in more detailed partitioned form as:

[On]g‘ [Gn]m [0113 [Uijm ai [ellk
(era) @r3)  (:8) (3l (er2) (3. )
Wl Ozl (01, Gl Boo [éaly
@,3) @r3)  (e8)  (Bity) (3/1) @r1) |
@ | . . . _ ) - .
(U, (U5 Ny Ny 5, Cx
G0)  (8:2)  (ve)  itg) 1) €:1)
O WL, Ny N, by <y
L(.{‘gcra) (‘4*,3) (5!4—") «’gg"{’f‘) (‘(‘[kll) ("wn
- L nnd e -

We shall find it conveﬁienf to proceed formally os if ali m stations in the tracking network
were to observe all passes (presently, this assumption will be dropped)l If we then assume
that (49) has been evaluated for all m stations (i=1,2,...,m), and merge the resulting
individual sets of normal equations into a common system by the process of zero augmentation
devcloped in Brown, Trotter (1967), we shall obtain the system (50) indicated on the next
page. If a particular station does not participate in the tracking of the kth pass, equation
(50) should be modified by (a) replacing all elements corresponding to the station in the
Uand & portions of the nomal equations by zeroes, and (b) deleting from the remainder

of the normal equations the elements corresponding to the station.

By adopting tho partitioning indicated by the broken lines in (50), we can

represent the system of normal equations for the k th pass in the more compact form:
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We next assume that (51) has been evaluated for all n observed passes (k=1,2,...,n)
and again resort to the process of zero augmentation to merge all such individual sets of
normal equations into @ common sysiem. This leads to the system indicated in equation
(52) below. We shall assume tivat weight matrices \75/, \;V,, P W,( reflecting the apriori
constraints to be exercised in the adjustment have been absorbed into the appropriate

_diagonal blocks of (52). Then (52) represents the final system of normal equations.
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~ Having fonmed the system of normal equations for the adjustment, we must now
address the problem of solving the system, expecially in view of the consideration that
it can grow to huge dimensions. We do this in Section 4 which is devoted to the
theory of partitioned regression. We need only point out here thet the system of nomal
equations (52) is precisely of the same form as the second order partitioned system
indicated in equation (66) of Section 4, Accordingly, by applying the algorithms of
second order partitioned regres